
AnyTop: Character Animation Diffusion with Any Topology
Anonymous Author(s)

Fig. 1. AnyTop generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input.

Generating motion for arbitrary skeletons is a longstanding challenge in
computer graphics, remaining largely unexplored due to the scarcity of di-
verse datasets and the irregular nature of the data. In this work, we introduce
AnyTop, a diffusion model that generates motions for diverse characters
with distinct motion dynamics, using only their skeletal structure as in-
put. Our work features a transformer-based denoising network, tailored
for arbitrary skeleton learning, integrating topology information into the
traditional attention mechanism. Additionally, by incorporating textual joint
descriptions into the latent feature representation, AnyTop learns semantic
correspondences between joints across diverse skeletons. Our evaluation
demonstrates that AnyTop generalizes well, even with as few as three train-
ing examples per topology, and can produce motions for unseen skeletons as
well. Furthermore, our model’s latent space is highly informative, enabling
downstream tasks such as joint correspondence and temporal segmentation.
Our webpage, https://anytop2025.github.io/Anytop-page, includes links to
videos and code.

1 INTRODUCTION
Character animation is a fundamental task in computer animation,
playing a crucial role in industries such as film, gaming, and virtual
reality. Animating 3D characters is a complex and time-consuming
task that requires manual high-skill effort. Typically, animation
pipelines involve a unique skeleton for each character, defining its
motion span, over which the animation is carefully crafted.

In recent years, neural network-based approaches have simplified
the animation process, showing impressive results in tasks such
as motion generation and editing [Dabral et al. 2023; Holden et al.
2016; Tevet et al. 2023; Zhang et al. 2024a]. However, most existing
methods cannot handle different skeletons and focus on a single
topology [Kapon et al. 2023; Shafir et al. 2024], target skeletons that
differ only in bone proportions [Tripathi et al. 2025; Yang et al. 2023],
or rely on skeletal homeomorphism [Aberman et al. 2020].
While effective within their scopes, these methods overlook the

broader opportunities presented by diverse character animation,
which require handling a wide variety of skeletal topologies. Con-
versely, methods designed to handle multiple skeletons often lack
scalability, relying on topology-specific adjustments such as addi-
tive functional blocks for each skeleton [Li et al. 2024] or entirely
distinct instances of the model [Li et al. 2022; Raab et al. 2024].

There are two main reasons keeping arbitrary skeleton anima-
tion generation largely under-explored. First, the irregular nature
of the data, with skeletons varying in the number of joints and their
connectivity, challenges standard methods for processing and anal-
ysis. Second, the lack of datasets encompassing diverse topologies
presents significant challenges for data-driven approaches.
In this work, we introduce AnyTop, a diffusion framework de-

signed to generate motions for arbitrary skeletal structures, as illus-
trated in Fig. 1. AnyTop is carefully designed to handle any skeleton
in a general manner with no need for topology-specific adjustments.
AnyTop is based on a transformer encoder, specifically adapted

for graph learning. While many works embed an entire pose in
one tensor [Han et al. 2024; Xie et al. 2023], we embed each joint
independently at each frame [Aberman et al. 2020; Agrawal et al.
2024], enabling capturing both joint interactions within the skele-
ton and universal joint behaviors across diverse skeletal structures.
AnyTop applies attention along both the temporal and skeletal axes.
Notably, the skeletal attention is between all joints. This is in con-
trast to previous art, and is made possible thanks to our topological
conditioning scheme; we integrate graph characteristics [Park et al.
2022; Ying et al. 2021a], such as joint parent-child relations, into the
attention maps. Consequently, each joint has access to information
from all skeletal parts while also being able to prioritize topologi-
cally closer joints. Furthermore, to bridge the gap between similarly
behaved parts in different skeletons, AnyTop incorporates textual
descriptions of joints into the latent feature representation.

AnyTop is trained on Truebones Zoo dataset [Truebones Motions
Animation Studios 2022], which includes motion captures of diverse
skeletal structures. We contribute a processed version, aligned with
the popular HumanML3D [Guo et al. 2022a] representation, which
will be made publicly available. Using quantitative and qualitative
evaluations, we show that AnyTop outperforms current art.

Our model demonstrates three forms of generalization in its gen-
erations: In-skeleton Generalization allows for new motion variants
that preserve the character’s original motion motifs; Cross-skeleton
generalization facilitates generating motions that adapt motifs from
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several characters; and Unseen-skeleton generalization enables mo-
tion generation for skeletons not encountered during training. Be-
yond its generative capabilities, AnyTop’s highly informative Diffu-
sion Features (DIFT) [Tang et al. 2023] enable various downstream
applications, including unsupervised correlation, temporal segmen-
tation, and motion editing.

The approach presented here, and its ability to share information
across characters, opens doors for more flexible generation, better
equipped to learn and operate on more complex characters and
scenarios, that better fit the real-world needs of 3D content creators.

2 RELATED WORK
Skeletal variability in generative motion models . We refer to
four types of skeletal variability (Tab. 1). The naming draws from
terminology in the graph domain, hence we interchangeably use
the terms joint and vertex, as well as edge and bone. A single skele-
ton type refers to identical skeletons — that is, skeletons with the
same vertices, connectivity, and edge lengths. Isomorphic skeletons
correspond to isomorphic graphs, sharing vertices and edges but po-
tentially differing in edge proportions.Homeomorphic skeletons may
vary in structure, yet correspond to homeomorphic graphs, i.e., use
topologies obtained from the same primal graph by subdivision of
edges. Specifically, homeomorphic skeletons share the same number
of kinematic chains and end-effectors. Finally, non-homeomorphic
skeletons vary in their structure and have no common primal graph.

Most motion generative methods focus on a single skeletal struc-
ture [Karunratanakul et al. 2023; Petrovich et al. 2021; Raab et al.
2023]. Others train on isomorphic skeletons [Villegas et al. 2021;
Zhang et al. 2023b], including works that use the SMPL [Loper et al.
2015] body model [Jang et al. 2024; Petrovich et al. 2022; Tripathi
et al. 2025] and SMAL [Zuffi et al. 2017] bodymodel or its derivatives
[Rueegg et al. 2023; Yang et al. 2023]. A smaller portion of genera-
tive works support homeomorphic skeletons [Cao and Yang 2024;
Lee et al. 2023; Ponton et al. 2024; Studer et al. 2024; Zhang et al.
2024d]. Among these works, some [Aberman et al. 2020] require
a designated encoder and decoder per skeleton, and some [Zhang
et al. 2024b] offer a unified framework for all skeletons.

Only a handful of works can handle non-homeomorphic skeletons.
Martinelli et al. [2024] performs motion retargeting by learning
a shared manifold for all skeletons, and decoding it to motions
using learned skeleton-specific tokens. The learned tokens capture
the skeletal information of characters in the dataset, limiting the
model’s ability to generalize to skeletons unseen during training. Its

Table 1. Skeletal Variability. Character skeletons can vary in edge length,
kinematic chain complexity, or overall topology. Each level of variation
introduces greater challenges for motion synthesis. AnyTop can generate
motions for dozens of non-homeomorphic skeletons using a single model.

Skeleton
Variability type

Edge lengths
variations

Kinematic chains
variations

Primal skeleton
variations

Single ✗ ✗ ✗

Isomorphic ✓ ✗ ✗

Homeomorphic ✓ ✓ ✗

Non-homeomorphic ✓ ✓ ✓

results are shown exclusively on bipeds, leaving the applicability to
other character families (e.g., quadrupeds, millipedes) unexplored.
WalkTheDog [Li et al. 2024] uses a latent space that encodes motion
phases and accommodates non-generative motion matching.

A different class of generativemodels bypasses the handling of the
skeletal structure by generating motion directly from point clouds
[Mo et al. 2025], shape-handles [Zhang et al. 2023a] or meshes
[Muralikrishnan et al. 2024; Song et al. 2023; Ye et al. 2024; Zhang
et al. 2024c]. These works demonstrate great flexibility in target
character structure, but overlook the advantage of skeletons, which
aremore compact and semantically meaningful, easier tomanipulate
via rig-based animation, and compatible with physics engines [Tevet
et al. 2024] and inverse kinematics systems. Some works [Wang et al.
2024] perform automatic rigging after the generation, but automatic
rigging often necessitates manual adjustments.
Finally, methods that support arbitrary skeletons [Li et al. 2022;

Raab et al. 2024] involve a separate training process for each skeleton,
exhibiting scaling issues and lacking Cross-skeleton generalization.

AnyTop addresses training on non-homeomorphic skeletons and
is the only skeletal-based approach capable of generating natural,
smooth motions on a diverse range of characters, including bipeds
(e.g., raptor, bird), quadrupeds (e.g., dog, bear), multi-legged arthro-
pods (e.g., spider, centipede), and limbless creatures (e.g., snakes).
To the best of our knowledge, our work is the only one capable of
accepting an input topology, including unseen ones, and generating
motions based on that topology.

Transformer-based Graph Learning. Early versions of deep net-
works on graphs relied on convolutional architectures [Kipf and
Welling 2016]. The emergence of transformers has sparked a new av-
enue of research, integrating graphs and transformers. GAT [Veličković
et al. 2018] replace the graph-convolution operation with a self-
attention module, where attention is restricted to neighboring nodes.
Rong et al. [2020] iteratively stack self-attention layers alongside
graph convolutional ones to account for long-range interactions
between nodes. Unlike transformers in the language and imaging
domains, and due to the irregular structure of graphs, these earlier
works do not use positional encoding.

Subsequent works [Dwivedi and Bresson 2021; Kreuzer et al. 2021]
linearize the graphs into an array of nodes and add absolute posi-
tional encoding to each node. However, linearization is unnatural
to the graph structure, requiring a reconsideration of the approach.
Encoding relative positional information has been explored to

maintain positional precision while adhering to the graph’s struc-
ture. Works using it [Park et al. 2022; Shaw et al. 2018; Ying et al.
2021b] integrate relative positional encoding into the attention map
based on relative measures, such as shortest path distance between
nodes or edge type.
The aforementioned approaches are discriminative, applied to

tasks such as regression and segmentation. AnyTop leverages the
relative positional encoding approach for generative tasks and tailors
it to themotion domain. In particular, our work redefines edge types
to capture joint relations within skeletal structures and considers a
temporal axis, which is not present in the graph domain.
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Fig. 2. Overview. The input to AnyTop is a noised motion 𝑋𝑡 and the skeleton S = {PS, RS, DS,NS }, where PS is the rest-pose, RS is the joints relations,
DS is the topological distances between each pair of joints and NS is the joints names. The Enrichment Block incorporates the skeletal features into the
noised motion by concatenating the embedded PS to the sequence and adding a T5-embedded name to each joint. The enriched motion is then passed
through a stack of L Skeletal Temporal Transformer layers. We apply skeletal attention along the joint axis, capturing interactions between all joints, and
incorporate the topology information RS and DS to attention maps. Next, we apply temporal attention along the frames axis. Finally, the output is projected
back to the motion features dimension, facilitating the reconstruction of the motion sequence.

3 METHOD
AnyTop is a diffusion model synthesizing motions for multiple dif-
ferent characters with arbitrary skeletons. Given a skeletal structure
for input, it generates a natural motion sequence with high fidelity to
ground-truth characters. AnyTop is based on a transformer encoder,
specifically adapted for graph learning, as depicted in Fig. 2.

3.1 Preliminaries
Motion Representation. We represent motion as a 3D tensor 𝑋 ∈
R𝑁× 𝐽 ×𝐷 , where 𝑁 and 𝐽 are the maximum number of frames and
joints across all motions in the dataset, and D is the number of
motion features per joint. As motions vary in duration and skele-
tal structure, we pad the original number of frames and joints of
each motion to match the maximum values 𝑁 and 𝐽 , respectively.
We adopt a redundant representation, where each joint 𝑗 (except
the root) consists of its root-relative position 𝑝 𝑗 ∈ R3, 6D joint
rotation 𝑟 𝑗 ∈ R6 [Zhou et al. 2018], linear velocity 𝑣 𝑗 ∈ R3, and
foot contact label 𝑓 𝑐 𝑗 ∈ {0, 1}. Altogether a joint is represented by
{𝑝 𝑗 , 𝑟 𝑗 , 𝑣 𝑗 , 𝑓 𝑐 𝑗 } ∈ R13, hence 𝐷 = 13. For the root joint, features
include its rotational velocity, linear velocity and height, which
are concatenated and zero-padded to match the size 𝐷 . Our repre-
sentation is inspired by Guo et al. [2022a]; however, our approach
maintains features at the joint level by representing each joint as
a separate tensor, resulting in 𝐽 tokens per frame. In contrast, Guo
et al. concatenate features from all joints into one tensor, resulting
in a single token per frame.
Skeletal structure Representation. In the context of 3D motion,
topology is a directed, acyclic, and connected graph (DAG). Adding
geometric information to this graph makes it a skeleton. We use
the terms “topology" and “skeleton" interchangeably throughout
this work, clarifying any distinction when necessary. A rest-pose is

the character’s natural pose, represented by (G,𝑂), where G is a
DAG defining the topological hierarchy and𝑂 ∈ R𝐽 ×3 is a set of 3D
offsets, specifying each joint’s parent-relative position. In our work,
we represent a skeleton by S = {PS,RS,DS,NS}. The first term,
PS ∈ R𝐽 ×𝐷 , is the rest-pose, converted to the format of individual
poses in the motion sequence. The second term, RS ∈ N𝐽 × 𝐽

0 , is the
joints relations, where RS [𝑖, 𝑗] holds the relation type between 𝑖

and 𝑗 . We allow six types of relations, which are child, parent, sibling,
no-relation, self and end-effector. Self and end-effector are valid only
in case 𝑖 = 𝑗 , and end-effector specifies if the joint is a leaf in GS .
The third term, DS ∈ N𝐽 × 𝐽

0 , represents the graph distances, where
DS [𝑖, 𝑗] holds the topological distance between 𝑖 and 𝑗 in GS , up to
a maximal distance 𝑑𝑚𝑎𝑥 . The topological conditions, RS and DS ,
are illustrated in Fig. 3. Finally,NS is the joints’ textual descriptions,
which are typically included in 3D asset formats (e.g., bvh, fbx).

3.2 Architecture
AnyTop is a generative Denoising Diffusion Probabilistic Model
(DDPM) [Ho et al. 2020]. At each denoising step 𝑡 ∈ [1,𝑇 ] it gets
a noisy motion 𝑋𝑡 and a skeleton S = {PS,RS,DS,NS} as input,
and predicts the clean motion 𝑋0 [Tevet et al. 2023] rather than the
noise 𝜖𝑡 .

AnyTop consists of two primary components, illustrated in Fig. 2.
The first is an Enrichment Block, which integrates skeleton-specific
information into the noised motion. The second is a Skeletal Tempo-
ral Transformer Block, which employs attention across both skeletal
and temporal axes while embedding topological information into
the skeletal attention maps.
Enrichment block. This block incorporates semantic information
from the rest-pose PS and the joint descriptionsNS , into the noised
sample 𝑋𝑡 . It projects PS to feature lentgh 𝐹 and concatenates it
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Fig. 3. Topological Conditions. Joint relations RS (top) and graph dis-
tances DS (bottom), visualized for a specific joint marked in red. Different
colors indicate different values in the row corresponding to the visualized
joint in the RS, DS matrices.

with 𝑋𝑡 along the temporal axis, effectively making it frame 0. The
joint descriptionsNS are encoded by a T5model, projected to length
𝐹 , and added to their corresponding joint features across all frames.
Finally, the block outputs enhanced data of shape R(𝑁+1)× 𝐽 ×𝐹 .
Skeletal Temporal Transformer block. The inputs to this block
are the embedded tokens of 𝑋𝑡 emitted from the Enrichment Block,
the diffusion step 𝑡 , and the precomputed valuesDS , RS . The block
comprises a stack of 𝐿 identical Skeletal Temporal Transformer (STT)
encoder layers, each consisting of three parts. The first component
is a Skeletal Attention, which performs spatial self-attention across
joints within the same frame. Unlike concurrent approaches that
limit attention or convolution to adjacent joints within the skeletal
hierarchy, our method enables each joint to attend to all others,
capturing long-range relations. To regain the local joint knowledge,
we incorporate topology information RS andDS into the attention
maps. This allows each joint to access information from all skeletal
parts while also prioritizing topologically closer joints.
The second component is a Temporal Attention, which applies

self-attention along the temporal axis for each joint independently,
observing its motion over time. To enhance efficiency and mitigate
overfitting, the temporal attention is applied within a temporal
window of length𝑊 . The third component is a feed-forward block.
Finally, the output is projected to the original motion dimension,
enabling motion reconstruction.
Topological Conditioning Scheme. We extend transformers for
graph-based learning by incorporating both graph topology and
node interaction information through our Skeletal Attention mecha-
nism. Inspired by discriminative works in the graphs domain [Ying
et al. 2021b], AnyTop introduces a novel method for generative
tasks, specifically tailored to themotion domain. We integrate graph
properties directly into attention maps, enabling the structural char-
acteristics of the graph to influence the learning process. Our work
uses two types of node affinity, the topological distance, DS , and
relations, RS , as detailed in Sec. 3.1. We incorporate the graph
information into the attention maps [Park et al. 2022], by learn-
ing distinct query and key embeddings for distances, denoted by
𝐸D
𝑞 , 𝐸D

𝑘
∈ R𝑑𝑚𝑎𝑥×𝐹 , and embeddings for relation, denoted by 𝐸R

𝑞 ,

𝐸R
𝑘

∈ R6×𝐹 , where 𝐸 ( ·)
𝑞 and 𝐸

( ·)
𝑘

denote embeddings that relate to
queries and keys, respectively, and 𝐹 is the latent feature size. These
embeddings are used to form two new attention maps, 𝑎D and 𝑎R
defined for a given pair of joints 𝑖, 𝑗 ∈ [𝐽 ]:

𝑎D𝑖 𝑗 = 𝑞𝑖 · 𝐸D
𝑞 [D𝑖 𝑗 ] + 𝑘 𝑗 · 𝐸D

𝑘
[D𝑖 𝑗 ], (1)

𝑎R𝑖 𝑗 = 𝑞𝑖 · 𝐸R
𝑞 [R𝑖 𝑗 ] + 𝑘 𝑗 · 𝐸R

𝑘
[R𝑖 𝑗 ], (2)

where 𝑞𝑖 , 𝑘 𝑗 denote the 𝑖’th joint query and 𝑗 ’th joint key, respec-
tively, and [·] denotes an index in the embedding matrix. Finally, we
incorporate graph information by adding the two attention maps to
the standard attention map and scaling their sum:

𝑎𝑖 𝑗 =
𝑞𝑖 · 𝑘 𝑗 + 𝑎D

𝑖 𝑗
+ 𝑎R

𝑖 𝑗√
𝐹

. (3)

The final attention score is computed by applying the standard
row-wise softmax to 𝑎𝑖 𝑗 .

3.3 Training
Data Sampling and Augmentations. We train AnyTop using
minibatches sampled with a Balancing Sampler to address the im-
balanced nature of the data (described in Sec. 6.1) and mitigate the
dominance of specific skeletons. To further enhance generalization,
we apply skeletal augmentations to the data samples, including ran-
domly removing 10% to 30% of the joints and adding new joints at
the midpoint of existing edges. Further details on our data augmen-
tation are provided in Appendix B .
Training Objectives. Given a motion 𝑋0 of skeleton S, its noised
counterpart𝑋𝑡 , with diffusion step 𝑡 ∼ [1,𝑇 ], our model predicts the
clean motion, 𝑋0 = 𝐴𝑛𝑦𝑇𝑜𝑝 (𝑋𝑡 , 𝑡,S). Our main objective is defined
by the simple formulation [Ho et al. 2020], namely,

L𝑠𝑖𝑚𝑝𝑙𝑒 = 𝐸𝑡∼[1,𝑇 ]


𝑋0 − 𝑋0



2
2 . (4)

The Mean Squared Error (MSE) over rotations does not directly
correlate to their distance in the rotation space, hence we apply
a geodesic loss [Huang et al. 2017; Tripathi et al. 2025] over the
learned rotations. Let 𝑟, 𝑟 ∈ R𝑁× 𝐽 ×6 denote the 6D rotations of 𝑋0
and 𝑋0 respectively. The geodesic loss is defined as follows:

L𝑟𝑜𝑡 =

𝑁∑︁
𝑛=1

𝐽∑︁
𝑗=1

arccos
𝑇𝑟 (𝐺𝑆 (𝑟𝑛,𝑗 ) (𝐺𝑆 (𝑟𝑛,𝑗 )𝑇 ) − 1

2
, (5)

where𝐺𝑆 is the Gram-Schmidt process, used to convert 6D rotations
to rotation matrices [Zhou et al. 2019], and 𝑇𝑟 is the matrix Trace
operation. Overall, the final training objective is

L = L𝑠𝑖𝑚𝑝𝑙𝑒 + 𝜆𝑟𝑜𝑡L𝑟𝑜𝑡 . (6)

4 ANALYSIS

4.1 Latent Space Analysis
In this section, we examine AnyTop’s latent space and show that
it features a unified manifold for joints across all skeletons. We
use DIFT [Tang et al. 2023], a framework designed for detecting
correspondence in the latent space of models undergoing diffusion.
DIFT features are intermediate activations from layer 𝑙𝑐𝑜𝑟𝑟 , extracted
during a single denoising pass on a sample that has been noised
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Fig. 4. Spatial Correspondence.Monkey (top left) depicts the reference
skeleton, while the fox, scorpion, and bird depict different target skeletons.
Target skeleton joints are color-coded to match their corresponding joints
in the reference. For better visualization, we color the bones to match their
adjacent joints. Note the correspondence in limbs, spine, and tail.

directly to diffusion step 𝑡𝑐𝑜𝑟𝑟 . These features serve as effective
semantic descriptors for predicting correspondence. Note that the
values we choose for 𝑙𝑐𝑜𝑟𝑟 and 𝑡𝑐𝑜𝑟𝑟 align with those used in the
original DIFT work. Let 𝑋𝑟𝑒 𝑓 denote a reference motion, and let
𝑋 𝑡𝑔𝑡 denote a motion in which we search for corresponding parts.
Let 𝑆𝑟𝑒 𝑓 , 𝑆𝑡𝑔𝑡 denote their skeletons, respectively.
Our spatial and temporal correspondence results are illustrated

in Figs. 4 and 5 respectively, and in the supplementary video.
Spatial Correspondence. We show that manifold features of se-
mantically similar skeletal joints across different characters are close
to each other. Our objective is to find the most similar joint in S𝑟𝑒 𝑓

for each joint in S𝑡𝑔𝑡 . To achieve this, we extract DIFT features
for both motions 𝑋𝑟𝑒 𝑓 , 𝑋 𝑡𝑔𝑡 at diffusion step 𝑡𝑐𝑜𝑟𝑟 = 2 and layer
𝑙𝑐𝑜𝑟𝑟 = 0, average them along the temporal axis, and obtain a single
feature vector per joint. Using cosine similarity, we detect the closest
counterpart for each joint in 𝑆𝑡𝑔𝑡 .
Temporal Correspondence. We show that AnyTop can recognize
pose-level similarities and identify analogous actions across different
skeletons. This time, our objective is to find the most similar frame
in 𝑋𝑟𝑒 𝑓 for each frame in 𝑋 𝑡𝑔𝑡 . To accomplish this goal, we extract
DIFT features at diffusion step 𝑡𝑐𝑜𝑟𝑟 = 3 and layer 𝑙𝑐𝑜𝑟𝑟 = 1, and
average them along the skeletal axis, resulting in a single feature
vector per frame. We use cosine similarity to detect the closest
counterpart for each frame in 𝑋𝑡𝑔𝑡 .

4.2 Generalization Forms
We identify three forms of generalization in our generated motions.
In-skeleton Generalization. dubbed in-gen, refers to generaliza-
tion within a specific skeleton, featured as both temporal composition
– combining motion segments from dataset instances, and spatial
composition – introducing novel poses by combining skeletal parts
of ground truth poses. Notably, spatial composition is enabled by our
per-joint encoding, which provides the flexibility required for such

time

Fig. 5. Temporal Correspondence.Monkey (top row) features the refer-
ence motion, while the Crab and Lynx represent two target motions. The
frames of the targets are color-coded to align with their corresponding
reference frames. Note the correspondence: aggressive motion segments
are pink, idle frames blue, and transitional frames green.

AnyTop Generation (ours)

Ground Truth Motion A Ground Truth Motion B

SinMDM Generation

time time

Fig. 6. In-skeleton Generalization. The top row depicts two ground truth
chicken motions: pecking (left) and walking (right). The bottom row presents
synthesized motions of an adapted SinMDM (left) and AnyTop (right). The
emphasized frames in AnyTop demonstrate spatial composition of walking
and pecking, introducing novel poses not present in the ground truth. Sin-
MDM embeds entire poses, hence cannot spatially-compose joints.

diversity. In Fig. 6 and in our supp. video, we showcase AnyTop’s
in-gen and highlight how other methods, which embed the entire
pose, fail to achieve a comparable variety.
Cross-skeleton generalization. dubbed cross-gen, captures shared
motion motifs across skeletons. This type of generalization is par-
ticularly useful for adapting one animal to exhibit the behavior of
others, as shown in Fig. 7 and in our video. When motions must
strictly align with typical behaviors, the training dataset can be
restricted accordingly.
Unseen-skeleton generalization. extends to skeletons not encoun-
tered during training, and illustrated in Fig. 8 and the video.

5 APPLICATIONS
AnyTop enables various downstream tasks; we demonstrate two.
Temporal Segmentation. Temporal segmentation is the task of
partitioning a temporal sequence into disjoint groups, where frames
sharing similar characteristics are grouped. For a clean sample 𝑋0,
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Cross-skeleton GeneralizationNearest Ground Truth

time time

Fig. 7. Cross-skeleton generalization. Right: a generated motion featur-
ing an action not in the performing skeleton’s ground truth. Left: notably,
the nearest ground truth originates from a different character.

either generated or given, and skeleton S, we extract DIFT features
at diffusion step 𝑡𝑠𝑒𝑔 =3 and layer 𝑙𝑠𝑒𝑔 =1. The features are averaged
along the joint dimension to produce a single feature vector per
frame. We apply PCA for dimensionality reduction and then use
K-means to cluster the frames into 𝑘=3 categories. Our results are
visualized in Fig. 9 and in the supp. video. This application reinforces
Sec. 4, showing that AnyTop’s latent features are effective frame
descriptors. However, in Sec. 4, frames are grouped by similarity to
𝑋𝑟𝑒 𝑓 , while here they are grouped by similarity to each other.
Editing. We demonstrate our method’s versatility through two mo-
tion editing applications: in-betweening for temporal manipulation
and body-part editing for spatial modifications, both leveraging the
same underlying approach. For in-betweening, the prefix and suffix
of the motion are fixed, allowing the model to generate the middle.
For body-part editing, we fix some of the joints and let the model
generate the rest. Given a fixed subset (temporal or spatial) of the
motion sequence tokens, we override the denoised 𝑥0 at each sam-
pling iteration with the fixed motion part. This approach ensures
fidelity to the fixed input while synthesizing the missing elements
of the motion. Our results, in Fig. 10 and the supp. video, show a
smooth and natural transition between the given and the synthe-
sized parts, and demonstrate that our model successfully generalizes
techniques previously limited to human skeletons [Tevet et al. 2023]
to accommodate diverse skeletal structures.

6 EXPERIMENTS

6.1 Dataset and Preprocessing
The Truebones Zoo [Truebones Motions Animation Studios 2022]
dataset comprises motion captures featuring 70 diverse skeletons,
including mammals, birds, insects, dinosaurs, fish, and snakes. The
number of motions per skeleton ranges from 3 to 40, adding up
to 1219 motions and 147,178 frames in total. The dataset includes
variations in orientation, root definition, and scale. Additionally, the
skeletons vary in joint order, naming conventions, and connectivity
standards. To address these variations, we have performed compre-
hensive preprocessing of the data, including aligning all motions to
the same orientation and average bone length, centering the first
frame at the origin, and ensuring it is located on the ground. This
process is described in details in Appendix B and the processed
data will be made available.

Adapted MDM

AnyTop (Ours)

Fig. 8. Unseen-skeleton generalization Zero-shot inference of the cat
(left) and komodo dragon (right) using AnyTop (top) and adapted MDM
baseline (bottom). AnyTop’s generatedmotionsmaintain natural appearance
while MDM’s generated motions are static and jittery.

Skeletal Subsets. In addition to experimenting with the full dataset,
we categorize the skeletons into four groups based on their mo-
tion dynamics and train AnyTop on these subsets, alongside a
model trained on the entire dataset. The four skeletal categories are
Quadrupeds, Bipeds, Flying, and Insects. These subsets allow us to
constrain cross-gen to characters with similar behavior. Our visu-
alizations illustrate generations from models trained on the entire
dataset or sub-datasets, depending on the context (e.g., Fig. 8).

6.2 Implementation details
We use 𝑇 = 100 diffusion steps, 𝐿 = 4 STT layers, and latent dimen-
sion 𝐹 = 128. We train the model using a single NVIDIA RTX A6000
GPU for 24 hours. Inference runs on an NVIDIA GeForce RTX 2080
Ti GPU. More implementation details can be found in Appendix A .

6.3 Evaluation
Benchmark. To evaluate AnyTop, we introduce a benchmark com-
prising 30 skeletons randomly selected from those with cumulative
frame counts ranging between 600 and 1200. The benchmark in-
cludes 43% Quadrupeds, 17% Bipeds, 23% Flying, and 17% Insects,
reflecting the relative proportions of these categories in the dataset.
Metrics. We report four metrics that measure different aspects of
the generated motions, following Li et al. [2022]; Raab et al. [2024].
The metrics are calculated separately for each skeleton, and the
mean and standard deviation across all tested skeletons are reported
in the form mean±std. For each skeleton, we evaluate a number of
samples proportional to its sample count in the dataset. Let 𝑀 ,𝐺
denote the group of ground truth (GT) and generated motions of
the assessed skeleton, respectively. The metrics that we use are
(a) coverage, which is the rate of temporal windows in𝑀 , that are
reproduced in 𝐺 , (b) local diversity, which is the average distance
between windows in 𝐺 and their nearest neighbors in 𝑀 , and (c)
inter diversity, the diversity between synthesized motions. We define
intra diversity to be the diversity between sub-windows internal to
a motion and define (d) intra diversity diff, which is the difference
between the intra diversity of 𝐺 and that of𝑀 . Metrics (a) and (d)
evaluate fidelity to the GT, while metrics (b) and (c) assess diversity.
An ideal score features both high fidelity and high diversity. High
fidelity with low diversity suggests overfitting, while low fidelity
with high diversity indicates divergence and noise.
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Stand Fall On the ground

Idle Stretch Growl

Idle Fall On the ground

time

Fig. 9. Temporal Segmentation. Temporal clustering on a tyrannosaurus,
a cat, and an anaconda snake, using K-means on PCA-reduced DIFT features.

Given Generated

Fig. 10. Editing. Top: In-betweening. Givenmotion prefix and suffix, AnyTop
can generate the middle frames. Bottom: Body part editing. Given the
motion of the lower body, AnyTop can generate its complement for the
upper body. Both editing strategies produce smooth and natural transition
between the given and the synthesized parts.

6.4 Baselines
To the best of our knowledge, no current works address such a
diverse range of skeletal structures within a single model. Hence,
we compare AnyTop to adaptations of two baselines. The first is
MDM [Tevet et al. 2023], originally designed for a single humanoid
skeleton. MDM uses per-frame embedding, so to match its represen-
tation format, we concatenate all joint features for each character,
and pad them to a length of 𝐽 ×𝐷 . For fairness, we also concatenate
the vectorized rest-pose embedding PS along the temporal axis as
frame 0. Since MDM accepts textual conditions, we use the skele-
ton’s name (e.g., Cat, Dragon) as the input text. Additionally, since
MDM’s original configuration was designed for a dataset 14 times
larger than ours [Guo et al. 2022b], we reduced its latent dimension
size to mitigate overfit.

The second baseline is SinMDM [Raab et al. 2024], designed to be
trained on a single motion sequence. We modify it to enable training
on multiple sequences of the same character, resulting in a separate
model for each skeleton.

time time

AnyTop Generation (ours)MDM Generation

Fig. 11. Comparison with MDM Baseline. AnyTop (right) generates nat-
ural motions, while MDM (left) produces static, jittery motions.

6.5 Quantitative Results
Table 2 shows a quantitative comparison of AnyTop and the base-
lines. AnyTop outperforms MDM in all categories and SinMDM in
all but coverage, which is expected since SinMDM is trained sepa-
rately for each skeleton. Note the significant gap in diversity metrics,
where the table shows AnyTop generalizes well, while the others
struggle to do so. We also report the models’ parameter count, show-
ing ours uses fewer parameters, enabling lower computation and
faster inference. In Appendix C , we provide a comparison with the
baselines on the data subsets, demonstrating our model’s superiority
on these as well.

6.6 Qualitative Results
Our supp. video reflects the quality of our results. It presents gener-
ated motions for various skeletons and comparisons to baselines.
In Fig. 11, we show that AnyTop produces natural and lively

motions while MDM produces static, jittery motions. Moreover,
MDM’s results in our video show jittery transitions and unnatural
poses. Figure 6 and our supp. video show that AnyTop can generate
novel poses by effectively combining joints from different ground
truth poses. In contrast, SinMDM is limited to temporal in-skeleton
generalization and cannot handle spatial composition, due to its
reliance on per-frame features. Moreover, since SinMDM trains a
separate model per skeleton, it cannot feature cross-skeleton or
unseen-skeleton generalization. As accurate foot contact is one of
the major factors of motion quality, we follow Li et al. [2022]; Raab
et al. [2023] and use an IK post-process to ensure proper contact.
Unseen skeleton. We present two unseen skeleton motions. One is
a komodo dragon, generated by the Bipeds model. The second is a
Cat, generated by a model trained on Quadrupeds, excluding the cat.
Figure 8 and our supp. video demonstrate AnyTop generalizes well
to unseen skeletons, while adapted MDM under the same settings
generates static and jittery motions.

Table 2. Comparison with baselines. Our model clearly outperforms the
baselines. Bold and underline denote best and second best, respectively. ∗

indicates the work was adapted to align with the terms of our experiment.

Model Coverage ↑ Local
Div. ↑ Inter

Div. ↑ Intra Div.
Diff. ↓ #Param.

(M) ↓

MDM∗ [2023] 71.3±31 0.168±0.12 0.139±0.13 0.177±0.08 5.96
SinMDM∗ [2024] 89.3±15 0.080±0.13 0.280±0.13 0.144±0.09 176.1 (5.87 × 30)
AnyTop (Ours) 80.5±20 0.252±0.14 0.312±0.17 0.118±0.07 2.28
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6.7 Ablation
In Tab. 3, we explore three key components of AnyTop’s architec-
ture. First, the results confirm that without access to topological
information, the model struggles to prioritize joints based on their
hierarchical relations. Omitting the incorporation of D and R leads
to degradation in all metrics. Next, excluding the rest pose PS pro-
duces inferior results, reinforcing the idea that PS encodes vital
information about joint offsets and bone lengths. Lastly, we examine
cross-skeletal prior sharing via the addition of joint name embed-
dings. While cross-gen improves motion diversity, it introduces a
tradeoff, as generated motions may exhibit motifs absent in the
skeleton’s ground truth, reducing coverage. Results show that re-
moving joint name embeddings increases coverage but severely
sacrifices diversity and cross-skeleton generalization.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK
We have presented AnyTop, a generative model that synthesizes
diverse characters with distinct motion dynamics using a skeletal
structure as input. It uses a transformer-based denoising network,
integrating graph information at key points in the pipeline. Our
evaluation shows a highly informative latent space and notable
generalization, even for characters with few or no training samples.
One limitation of our method stems from imperfections in the

input data. Despite our cleaning procedure, certain data artifacts
remain unresolved. Another limitation is that our data augmentation
process is computationally expensive with 𝑂 (𝐽 2) complexity.
In the future, we plan to use AnyTop for skeletal retargeting,

multi-character interaction, editing, and various control modalities
such as text-based and music-driven animation. Another potential
direction is editing animations by simply modifying joint labels
in the text descriptions. Finally, future work could further explore
DIFT features in the motion domain.
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APPENDIX
This Appendix provides additional details to complement the in-
formation presented in the main paper. While the main paper is
self-contained, the details provided here offer further insights and
clarifications.

In Appendix A, we provide implementation details of AnyTop, and
in Appendix B, we elaborate on our preprocessing and augmentation
pipelines. Finally, in Appendix C and present additional quantitative
results beyond those in the main paper.

A IMPLEMENTATION DETAILS
The maximum topological distance we allow in D is 𝑑𝑚𝑎𝑥 = 6,
and our Temporal Attention is applied on temporal windows of
length𝑊 = 31. For our model inputs, we allow maximum number
of joints 𝐽 = 143. During training, we use cropped sequences of
𝑁 = 40 frames. To enable our model handle higher frame positions
and generate longer sequences, we incorporate positional encoding
relative to the cropping index. For training, we used batch size of
16 when training on the entire dataset, and a batch size of 8 to train
in the data subsets.

B DATA
Truebones Zoo dataset. In addition to the data misalignment issues
discussed in the main paper, the dataset also contains vulnerabilities
such as excessive dummy joints, qualitative artifacts like foot sliding
and floating, and 20% of the frames involve skeletons connected
to the origin via an additional bone, resulting in artefacts such as
walking or running in place. We address some of these issues as
part of our data processing pipeline, which is detailed in the main
paper and further extended in the following paragraph.
Data Preprocessing. In this section, we provide further details on
the preprocessing steps mentioned in the main paper, as well as
describe additional refinements applied to the dataset. As part of
the alignment process, we ensure that all skeletons are properly
grounded. This is achieved by using the textual descriptions of the
joints to identify the foot joints of each skeleton. Based on their
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height in the rest pose, we determine the ground height for each
skeleton and subtract it from the corresponding root height in the
motion data. For skeletons that do not interact with the ground, such
as flying birds or swimming fish, the ground height is determined by
the position of the lowest joint in the rest pose. Another important
preprocessing step is ensuring that the rest poses of all skeletons are
natural. This is essential for two key reasons. First, many animals
feature a similar span of rotation angles in organs that have similar
functionality, e.g., the forearm. We would like this span of rotations
to constitute a manifold representing multiple animals. Once all
rotation angles are defined relative to a character’s rest-pose, we
have a common representation basis, hence the desired manifold
can be obtained.
Second, the rest pose is encoded as a single frame within the

motion sequence. To maintain consistency with the other frames,
which represent natural poses, the rest pose must also exhibit a
natural configuration. To accomplish this, we transform all motion
rotations so that they are relative to a natural rest pose, which can
either be provided as an additional motion capture (mocap) file or
selected from the skeleton’s idle motion.
In addition to the alignment procedure, we also extract relevant

information from the skeletons and motion data. First, we use foot
joints labels to generate foot-contact indicators for each frame,
which are concatenated with the motion features. Next, we compute
the mean and standard deviation for each skeleton’s frames and use
these statistics to normalize the motions before feeding them into
the model during training.

Input Preprocessing. The input to our model is a skeleton S =

PS,RS,DS,NS , derived from the raw rest pose of the character,
represented as (GS,𝑂S), along with the corresponding joint names.
Both (GS,𝑂S) and the joint names can be obtained from standard
motion capture formats (e.g., bvh, fbx).
The skeletal features S = {PS,RS,DS,NS} are computed as

follows: First, to compute PS , we apply forward kinematics with
zero rotations on (GS,𝑂S) obtaining the global joint positions in
the rest pose. These positions are then converted to root-relative co-
ordinates. To align the rest pose with the format of individual frames
in a motion sequence, we append to each root-relative position a
6D representation of zero rotation, zero velocity, and foot contact
indicators. The topological conditions, RS and DS , are derived
through a traversal of the skeletal hierarchy GS . Finally, the joint
namesNS are extracted from the motion capture data and undergo
text-preprocessing, which includes the removal of digits, symbols,
irrelevant words, and redundant prefixes. Additionally, side indica-
tors such as ’L/R’ are replaced with ’Left/Right’, non-English joint
names are translated, and similar actions are standardized.

Data augmentation. Skeletal Augmentation exposes our model
to a wider variety of skeletons, as described in the Method section
of the main paper. Next, we further elaborate about this process.
The first augmentation we apply is joint removal, which randomly
removes up to 30% of the joints from the skeleton, where feet joints
are never removed to maintain physical correctness. For efficiency
consideration, we exclude joints with more than a single child from
the removal procedure. The second augmentation is joint addition,
which introduces a new joint at the midpoint of a randomly selected

edge. After removing or adding joints to the skeleton, we updateRS ,
DS andNS accordingly. Note that updatingDS is computationally
expensive with a complexity of 0(𝐽 2), as it requires recomputing
the path between each pair of joints in the DAG.

C COMPARISON WITH BASELINES ON SUBSET
MODELS

We provide a quantitative evaluation of AnyTop trained on the
data subsets defined in the Experiments section of the main paper.
To maintain fairness in comparison, we train the adapted MDM
baseline separately for each subset. Since SinMDM is independently
trained for each skeleton, no additional adjustments are needed.
Each model is evaluated using the corresponding skeletons from
our benchmark that match the relevant data subset. The results,
shown in Tab. 4, indicate that AnyTop achieves the optimal coverage-
diversity tradeoff compared to all other baselines presented.

Table 4. Comparison on Data Subsets. Quantitative results of AnyTop
trained on different data subsets, compared to the baselines trained under
equivalent settings. ∗ indicates the work has been adjusted to our experi-
mental terms and † indicates that a specific skeleton (Scorpion) has been
removed from the SinMDM evaluation set, as SinMDM fails to converge
on this skeleton. This exclusion ensures that its impact does not skew the
overall score.

Subset Model Coverage ↑ Local
Div. ↑ Inter

Div. ↑ Intra Div.
Diff. ↓

Quadrupeds MDM∗ 83.3±23 0.103±0.14 0.112±0.07 0.160±0.03
SinMDM∗ 94.0±06 0.050±0.04 0.230±0.12 0.151±0.08
AnyTop 89.2±09 0.215±0.08 0.291±0.17 0.114±0.06

Bipeds MDM∗ 87.9±13 0.034±0.01 0.081±0.03 0.108±0.05
SinMDM∗ 95.0±05 0.040±0.02 0.251±0.12 0.090±0.03

AnyTop 93.5±05 0.191±0.09 0.288±0.19 0.120±0.06

Flying MDM∗ 63.7±31 0.219±0.25 0.193±0.18 0.154±0.08
SinMDM∗ 78.9±18 0.071±0.04 0.320±0.13 0.095±0.03

AnyTop 72.6±18 0.289±0.13 0.410±0.19 0.166±0.07

Insects MDM∗ 88.4±07 0.063±0.03 0.185±0.10 0.117±0.05

SinMDM ∗ 77.8±04 0.235±0.29 0.419±0.08 0.152±0.05

SinMDM ∗† 92.9±03 0.061±0.015 0.348±0.10 0.136±0.06
AnyTop 90.6±09 0.189±0.07 0.317±0.117 0.127±0.05
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